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ABSTRACT

The problem of determining the shape of a cable towed
in a circular path is considered both by experimental and
theoretical techniques. The equations of static equilibrium,
referred to a rotating coordinate system, are derived and
nondimensionalized to isolate the important parameters.
Certain order-of-magnitude simplifications are obtained.
The remainder of the study is restricted to cases where the
effect of hydrodynamic drag is negligible. The experimental
results indicate that for certain combinations of the govern-
ing parameters no stable equilibrium solution for the cable
shape exists. Rather, at these combinations, the system is
marked by a violent dynamic motion between two adjoining
nodal configurations. To examine this phenomenon analyti-
cally, the static equations are idealized to a vacuous towing
medium. It is shown that these equations possess several
possible solutions. The questions of stability of equilibrium
and onset of transition are resolved from these solutions by
reference to the experimental observations. Since no drag
forces are present in a vacuum, it is concluded that the
centrifugal loading is the principal agent responsible for
producing the unsteady dynamic behavior of the cable.

PROBLEM STATUS

This is an interim report; work is continuing on other
phases of the problem.
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Project RR-009-03-45-5807
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ON THE SHAPE OF A CABLE TOWED IN A CIRCULAR PATH

SYMBOLS

The symbols used in this report are defined as they appear in the text. The most
important ones are listed here for reference.

Symbols Appearing in Dimensional Equations

a the acceleration of the cable as seen by the fluid

A the cross-sectional area of the cable

Af the cross-sectional area to which drag on the fish is referenced

CD the drag coefficient of the cable

CDf the drag coefficient of the fish

d the diameter of the cable

f the external load per unit length on the cable

faJ 1~fhe fW respectively, the apparent mass force, the centrifugal force,
the hydrodynamic force, and the weight force, all per unit length,
acting on the cable

Ff the external load on the fish

Ff (, FFc' FM. Ffw respectively, the apparent mass force, the centrifugal force,
the hydrodynamic force, and the weight force acting on the fish

g the constant of gravitational acceleration

i j k respectively, unit vectors along the X, Y, and Z axes

E the length of the cable

Al the mass of the fish

M' the appropriate component of the apparent mass tensor of the
fish due to its radial acceleration through the fluid

P the position vector of a point on the cable

Pf the position vector of the fish

R the radius of the circle along which the towpoint of the cable
moves

1
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S the arc length measured along the cable

T the tension at a point along the cable

V the speed with which the towpoint of the cable moves

V the velocity of the cable as seen by the fluid

vt the component of v which is normal to the cable

Vf the velocity of the fish as seen by the fluid

W the weight of the fish

Wt the weight of the fluid displaced by the fish

X, Vt z the axes of a rotating, right-handed, Cartesian coordinate
system

the mass per unit length of the cable

p the mass density of the fluid

a the rotational frequency of the rotating coordinate system = VIR

O the vector angular velocity of the rotating coordinate system = sk

Symbols Appearing in Nondimensional Equations

C the drag constant of the cable = (1/2) pCvdR/(p + pA)

Cf the drag constant of the fish - (1/2)PCDfAf/(p + pA)

E (x) an error function

Vhf the nondimensional mass of the fish = (N + 5 )/f( + pA) R]

p the nondimensional position vector of a point on the cable = P/R

R the nondimensional resultant force vector = T
ds

R, Ry, Rz the components of ft

R"O the value of R- at s z o

R2C(A,C, w1) the value of R, immediately following transition of the cable to
its nth nodal shape

Rx0(A, wf) an abbreviated notation for R.(A,'c w ) when C = O

s the nondimensional arc length measured along the cable - SIR

T the nondimensional tension at a point along the cable
T/fyi + pA) gRI

2
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*v the nondimensional normal velocity of the cable through the
fluid = vn /V

W the nondimensional weight of the cable = (A - pA)/(p + pA)

Wf the nondimensional weight of the fish = (W - W%/l[( + pA) gR]

xl y' z the nondimensional axes of a rotating, right-handed Cartesian
coordinate system = X/R, Y/R, Z/R, respectively

Y the nondimensional rotational frequency = a =Vf

yec (A ,C, w) the value of y at which transition of the cable to its nth nodal
shape occurs

Y11 (A, Uf') an abbreviated notation for y~n(AC,w ) when C = 0

A the nondimensional length of the cable = L/R

.c the value of x below which only zero-node cable shapes are
possible

INTRODUCTION

With the work of Pode (1), Wilson (2), and Skop and O'Hara (3), the quasi-static
problem of determining the shape of a flexible, extensible cable towed in a straight path
has been well resolved for a large variety of hydrodynamic loadings. The remaining
outstanding quasi-static question concerns the shape of a cable towed in a circular path.
A recent bibliographic survey (4) of studies on the configurations of cable systems indi-
cates that little, if any, work has been done on the circular towing problem.

Aside from its theoretical interest, this problem has practical significance because,
for certain combinations of the governing parameters, the free end of the cable takes a
position at a given depth below the center of the towing circle. Thus, the possible use of
the circular towing concept for an intensive search or photographic mission of a particu-
lar area is of interest.

This report considers, both by experimental and theoretical means, the shape of a
flexible, inextensible cable towed in a circular path. The equations of equilibrium and
the boundary conditions which govern the cable shape are derived and nondimensionalized
to isolate the important parameters. A discussion of these parameters follows, and cer-
tain order-of-magnitude simplifications are obtained.

Even with these simplifications, the governing equations are still quite complex;
therefore, to determine some parametric values for which the free end of the cable is
stationary below the center of the towing circle, an experiment was performed. The
results of this experiment showed many unexpected phenomena, of which the most im-
portant is that for certain combinations of parameters no static solution for the cable
shape is possible.

Obviously, the static equilibrium equations cannot be used to study the dynamic be-
havior of the cable. This does not, however, negate their validity for predicting the
onset of unstable behavior and for determining the cable shape when static solutions are
possible. To ascertain whether the theoretical equations possess these properties, the
numerical studies in this report have been restricted to determining the cable shape in a
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vacuum. This restriction is in accord with the reported experiment for which the effect
of drag was negligible.

The assumption of a vacuous medium reduces the equilibrium problem from a highly
intractable set of six first-order, nonlinear differential equations to a set of two first-
order, nonlinear differential equations. Meanwhile, this assumption maintains the basic
characteristic which distinguishes towing in a circle from towing in a straight line. This
is the presence of a centrifugal force acting on the cable.

The results of this study clearly show that, with the proper interpretation, the equi-
librium equations are fully capable of predicting both the static cable shape and the onset
of cable instability.

EQUATIONS OF EQUILIBRIUM

Let X, Y, and z be the axes of a rotating, right-handed, Cartesian coordinate system
(Fig. 1), the origin of which coincides with the center of a circle of radius R along which
a ship moves with speed V. The Z axis is specified as the axis of rotation. Z = 0 is
taken as the water surface, and Z is considered as increasing down into the water. The
X axis of this system rotates along with the ship. The unit vectors along the X, ?, and Z
axes are represented by i, j, and k, respectively.

x

j k

Fig. I - Rotating Cartesian
coordinate system

/ J n~~4 = V/ft

Y

z

If the position vector of a point on the cable is denoted by P, where

P = Xi + Yj + Zk , (1)

then the equations of equilibrium for a flexible, inextensible cable are given by

d (7dP )+ f = ( {2a)7S \dS 

where Y is the tension in the cable, f is the external load per unit length, and S is the
are length measured along the cable. To the equations of equilibrium must be added the
geometric constraint

PT (2b)

4
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If S is taken as zero at the ship and as L at the towed body (fish), the appropriate
boundary conditions for the problem are

PI = Ri (3a)
SID

and

(dS )| =Ff. (3b)

In Eq. (3b), F, denotes the external force acting on the fish. The expression for this
force will be considered presently.

THE EXTERNAL FORCE ON THE CABLE

The external force per unit length f acting on the cable can be resolved into four
parts: gravity and buoyancy forces, centrifugal forces, apparent mass forces, and hydro-
dynamic drag forces.

If the linear density (mass per unit length) of the cable is given as f4, then the gravi-
tational force per unit length is pgk, where g is the gravitational acceleration. Also,
applying Archimedes' principle, the buoyancy force per unit length can be written as
-pAgk, where A is the cross-sectional cable area and p is the mass density of the water.
The gravity and buoyancy forces can be combined into one weight force given by

fw = (p - pA) gk u (4)

Before deriving the centrifugal, apparent mass, and hydrodynamic forces, it is nec-
essary to determine the velocity and acceleration of the cable as seen by the water,
which is at rest. Since the coordinate system is rotating with the ship about the Z axis,
the vector angular velocity a of the system is given by

0= Uk (5a)

where the rotational frequency 0 is

0 V/k. (5b)

To obtain the proper sign for Q, V must be taken as positive if the center of the towing
circle remains to the starboard of the ship. On remembering, that in equilibrium, the
cable has no motion relative to the rotating coordinate system, the velocity v and the
centripetal acceleration a as seen by the water of the cable point P are found from
Coriolis' theorems as

v = QxP = Qk x P (6a)

and

a = f0 z (a x P) = 0 2 k x (kxP) (6b)

As is well known, the centripetal acceleration leads to the presence of a centrifugal
force per unit length f,. This force is equal in magnitude to pa but acts in the opposite
direction; consequently, from Eq. (6b),

f, = -pQ 2k x (k x P) .

.....-

5
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The centripetal acceleration also leads to the presence of apparent mass forces on the
cable. Since a cable can be approximated as a circular cylinder, the apparent mass
force per unit length fs can be obtained from Lamb (5) as -pAa. Again from Eq. (6b),
the apparent mass force becomes

f- = -pAS
2

k x (k x P) . (8)

Consider now the hydrodynamic drag force. The usual method of specifying this
force (6) is to resolve it into components along three mutually perpendicular directions
known as the hydrodynamic axes. These three directions are, respectively, parallel to
the component of relative velocity which is tangent to the cable, parallel to the compo-
nent of relative velocity which is normal to the cable, and parallel to the direction which
is mutually orthogonal to the former two directions. In this coordinate system, the com-
ponents of the hydrodynamic force are known, respectively, as the tangential drag, the
normal drag, and the side drag. The relative velocity is the total velocity of the cable
as seen in the rest frame of the fluid. Since, for the problem under consideration, the
fluid is already at rest, the relative cable velocity is given by Eq. (6a)

A number of researchers (1,2,7) have discussed the forms and magnitudes of the
drag components. Their results show that the effects of side and tangential drag on the
equilibrium cable shape are negligible compared with the normal drag effects. Conse-
quently, for the purposes of this report, the tangential and side components of drag are
set equal to zero. The hydrodynamic force then consists entirely of its normal drag
component. If v, is used to represent the component of relative velocity which is nor-
mal to the cable, the magnitude of the normal drag is known to be (l/2)PCDdI v, 2, where
d is the cable diameter and CD is the cable drag coefficient. Since the normal drag acts
to resist the normal motion of the cable, its direction of action is given by -v,,/1 v,
The hydrodynamic force per unit length f1, is thus obtained as

Jh = -(I/2)pCDd¶ |(Sn v, Ba)

Further, since the unit tangent to the cable is given by dP/ds, the normal and total veloc-
ities of the cable are related through the equation

.= v/ dP) dP (Sb)
=dS) dS

which, by using Eq. (6a), becomes

v. = flk x P - Q [(kx P) ]S (9c)

The static equilibrium equation referred to the rotating coordinate system, Eq. 2a,
is now developed by setting the external force per unit length f equal to fI + f c + fa + fk
At this point, it is perhaps worthwhile to remark that the equilibrium equations obtained
herein can be alternatively obtained from the equations of motion derived by Reid for an
arbitrarily towed cable (8) by specializing the equations to an inextensible cable and
transforming them to a rotating coordinate system.

THE EXTERNAL FORCE ON THE FISH

To complete the specification of the equilibrium problem, the external force of the
fish F1 must be determined. As with the force on the cable, the load on the fish can be
divided into gravity and buoyancy forces, centrifugal forces, apparent mass forces, and

6
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hydrodynamic forces. For simplicity of argument, assume that the fish is a nonlifting
body and has an axis of symmetry that aligns itself parallel to the flow field.

The weight force on the fish is then given by

Ff. (W - W)k (lOs.)

where W is the weight of the fish and W' is the weight of the displaced fluid. Also, follow-
ing the same reasoning used in deriving the cable forces, the centrifugal force on the
fish becomes

Fi 0 = -MQ22 k x (kxP 6 ) , (lOb)

where ! is the mass of the fish and Pf is its position vector. Similarly, the apparent
mass force is given by

Ffa, = -1M' 2 kx(kP)cPf , (lOc)

where M' is the appropriate component of the apparent mass tensor of the fish due to its
radial acceleration through the fluid.

Because of the nonlifting and symmetry assumptions, the hydrodynamic force on the
fish is equal in magnitude to ( 1/2) pCDfA f I Sf 2 and acts in a direction opposed to the ve -
locity of the fish. Consequently, the vector drag force is given by

Ffh= -(1/2) pCDfAF |IVf I , (l0d)

where CDf is the drag coefficient of the fish, Af is the appropriate cross-sectional area:
of the fish, and Vf is the velocity of the fish. From Eq. (6a), the velocity of the dftsiis
obtained as

Vf = Zk X Pf (I e)

The total external force on the fish Ff is now given by Ffw + Ff, + Ff,, + Ffh. Sub-
stituting this in the boundary condition at S = L (Eq. (3b)) and further assuming that
Pf = P(L) fully specifies the boundary value-equilibrium problem which determines the
shape of a cable towed in a circular path.

A NONDIMENSIONAL FORM OF THE EQUILIBRIUM EQUATIONS

To determine the important combinations of parameters that appear in the problem,
it is necessary to nondimensionalize the equilibrium equations and boundary conditions.
This is accomplished by dividing all lengths by the towing radius R and by dividing the
cable tension by (p * pA) gR. This quantity is chosen rather than the cable weight in wa->
ter or the fish weight in water because, in particular cases, either or both of the latter
two weights may be zero. With these definitions, the nondimensional arc length ', the
nondimensional position vector P, and the nondimensional tension T become

sS/R, PP/R, T= T/[y + pA) gR]

Similarly, the nondimensional coordinates x, y, and z of the cable point a are related to
the dimensional coordinates by

x X/R, y I= 3/R, z= Z/1

7
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and the nondimensional position vector is given by

p = xi + yj + zk . (At)

After substituting these dimensionless quantities into Eq. (2a) and replacing f by the sum
of Eqs. (4), (7), (8), and (9a), the complete static equilibrium equation becomes

d ( ftd) + wk - y2h x (kx p) - Cyy vjv; = 0j (la)

where v* is the nondimensional normal velocity obtained from Eq. (9c) as

V* fdkxn% dp
= k X - [(kPu ds ds (12b)

The nondimensional weight w, rotational frequency y and drag constant C are defined by

w = ( - pA)(g + pA) , (13a)

y= U JR V/, (1b)
and

C = (1/2) pCDdR/(p + pA) (13e)

Coupled to the equilibrium equations, the geometric constraint, Eq. (2b), becomes

d~p dp
(14)

The boundary condition at the towpoint, Eq. (3a), now reads

p= = (15a)

On substituting for Ff the sum of Eqs. (1a, b, c, and d), the boundary condition at the
fish, Eq. (3b), becomes in full

(Tdp - Wfk - xmfy2k x (kxp) + CjyIyj Ik x pe(kiv)) j (15b)

where the nondimensional fish weight wf, fish mass mf, and fish drag constant Cf are
defined by

W[ = (W - W' )/f(4 e pA) gR]) (16a)

mf = (M + )')/ J(g + pA) R] (lb)

and

Cf - (1/2)pC0 FAf/(y *pA) . {t

The nondimensional cable length A is defined by

X = LfI . (17)

8
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Note that x is the only parameter which contains the actual cable length L. Consequently,
this nondimensionalization of the problem is particularly suited to answering the ques-
tion: If a ship runs at a speed V in a circle of radius R, then what length of cable is
needed to place a towed fish at a certain depth below the center of the towing circle?

A DISCUSSION OF THE NONDIMENSIONAL PARAMETERS

For the most general case of a cable pulled in a circular path through a dense me-
dium (such as water), seven parameters -four cable parameters w, y, C, and A and
three fish parameters wf6 , mj, and Cf- arise in the equilibrium problem. Actually, this
is quite an oversimplification, since the fish has been assumed symmetric and nonlifting
and the relation pf = p (X) has been assumed true. Obviously, the latter assumption
must be incorrect, since the fish is a distributed body; and, to obtain the correct bound-
ary conditions at the fish, it is necessary to consider its distributed configuration and
the actual point of cable attachment. The complete set of boundary conditions for an
arbitrary fish have been derived by Strandhagen and Thomas (9); however, these condi-
tions add only complexity and more parameters to an already complex problem and will
be ignored. Even for the simplified boundary conditions given by Eq. (15b), two of the
parameters, mf (Eq. (16b)) and Cf (Eq. (16c)), are usually unknown except for very ele-
mentary geometric bodies such as spheres, ellipsoids, etc. This is because of lack of
knowledge of the quantities 11' and CDF. Frequently, however, the apparent mass of the
fish N' can be estimated very accurately by analogy with a body of similar shape for
which this quantity has been calculated. Several useful examples are contained in
Lamb (5).

The drag coefficient CDf is another case, depending extensively on the shape and
alignment of the fish. Fortunately, for solutions of the type desired (the radius of the
fish approximately zero), the term containing Cf in Eq. (15b) can be neglected in com-
parison with the term containing of. Note first that the vector quantities k x p and
k X (k x p) are given by

k x p = -yi + xj

and
k x (kx p) = -xi - yj

Consequently, the centrifugal term in Eq. (15b) is on the order of nfy 2 rf, where rf is
the radius of the fish, whereas the drag term is on the order of Cfy2 rf2. The ratio of
the drag force to the centrifugal force is then Cf rf/mf, and since it is desired to find
solutions such that rf w 0, this ratio becomes vanishingly small. Thus, with little loss
of accuracy, the boundary condition at the fish can be simplified to

[T dP + nfy 2 k X (kx pjl = wfk. (18)

By eliminating the drag force on the fish, the equilibrium problem in a dense medium
has been reduced to one with six known (or easily obtainable) parameters.

In a nondense fluid (such as air), where it is permissible to neglect buoyancy and
apparent mass effects, the number of parameters is reduced to four. In such a medium,
the cable weight uw (Eq. (13a)) becomes identically equal to unity, and the fish parameters
Wf (Eq. (16a)) and mf (Eq. (1Gb)) become identical, since the weight of the fish W is equal
to Mg.

0 �W

9
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In a vacuum (p = a), only three parameters appear, since the drag constant C (Eq.
(13c)) of the cable vanishes identically.

Furthermore, for the case of a cable to which no fish is attached, the number of pa-
rameters for a dense fluid, nondense fluid, and vacuum become, respectively, four,
three, and two, since in this case Wf and mrf are both zero. These results are summa-
rized in Table i.

Table i
Independent Parameters for Particular Towing Mediums

Conditions Parameters

Dense Fluid With fish w, y, C, A For desired
Wf, mf solution Cf =0

Without fish w, y, C A Wf = 0, M6 = 0

Nondense Fluid With fish Y, C, X W = 1
.. _ _ .... Wf mf =Wf

Without fish y, C, A w= 1
nf = Wf= 0

Vacuum With fish Y, A w= 1, c =o
Wf mf = liff

Without fish Y1 A w= 1, C 0
_M = W_

RESULTANT FORCE TRANSFORMATION AND
EQUATIONS IN COMPONENT FORM

THE EQUILIBRIUM

To determine the solution to the set of equilibrium equations, Eqs. (12a) and (14),
subject to the boundary conditions, Eqs. (5a') and (18), the equations must first be ex-
pressed in their component forms. However, it is obvious that a numerical solution is
necessary, and, consequently, it is useful to simultaneously reduce the equilibrium equa-
tions to an equivalent set of first-order differential equations. A particularly useful
reduction to a set of first-order equations was introduced by Skop and O'Hara (3) and
termed the resultant force transformation. To effect this transformation, the resultant
force vector R is defined by

R = T dp
d7 (19a)

or inversely by

dp
S= 1/7 (19b)

Substituting Eq. (19b) into the geometric constraint, Eq. (14), the tension T is expressed
in terms of the resultant force through the relation

7 J RR . (1 )

10
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Eqs. (12a) and (19b), coupled with the diagnostic equation, Eq. (l9c), form a set of six
first-order differential equations for the three components of p and the three compo-
nents of R.

Writing
R - R~,i + Ryj + Rzk

substituting for p from Eq. (11), and performing the indicated vector operations in Eq.
(12a) result in the equations of equilibrium in component form:

dx
* = Rd /Ts (20a)ds

and

dz R- /; (20c)
ds Z

where

T = /RX2 * R 2 + ' 2 (20d)

Also,

dR,, [(Ry - yRx) RX + 2a
+ ,

2x + CYIyJA y ~J~ ~) r (21a)

_ + y2 y + Cyjyj A r(X r x) _ _ 0 (21b)

and

dR. (xRY- YR,)R 2c
ds+ w + CyJYJ A ( T T 2 0 ,(2Zle)

where

A = 2 (jxRy -Rx) (21d)

To complete the specification of the problem, the end conditions must be written in
component form. At s = o, Eq. (15a), these become

x (0) = 1 , (22a)

Y(0) = 0 , (22b)

11

(22c)z (O) - o,
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and at s = x, Eq. (18), they are

R"O) - mfy 2 X(X) = ° E

R.(A) - mfy 2 y(A) = 0

R,(A) - Wf 0 0 .

(23a)

(23b)

(23c)

SOME EMPIRICAL RESULTS

Even in air, there are four independent parameters (see Table 1) that can have an
effect on the equilibrium shape of the cable-fish system. Thus, before attempting an
analytical (numerical) solution of the equilibrium equations, it was decided to perform a
simple experiment to determine some ranges of parametric values for which the free
end of the cable is stationary below the center of the towing circle. The results of this
experiment showed several unexpected phenomena which are discussed in this section.

The experimental setup, Fig. 2, consisted of a vertical shaft coupled to a motor
driven by a variable autotransformer. A horizontal disk plate, containing a number of
holes to be used as cable towpoints, was attached to the end of the shaft. The cable mo-
tion was stopped by externally triggered stroboscopes, and photographs of the cable
shape were obtained. The frequency of revolution of the vertical shaft was read on 2
motor-controlled counter.

5 VARIABLE 

_AUT OTR ANSFORAMER

Fig. 2 - Experimental setup

mDISR PLATE

CABLE

The cable used was a 1/32-in. braided dacron fishing line weighing 0.1824 g/ft. Two
different towed bodies, represented by lead fishing sinkers weighing 14.132 g and 16.416
g, were used. The towing medium was air, and to calculate the drag constant C (Eq.
(13c)), a drag coefficient CD of 1.2 was assumed. For the results detailed in this report,
the towing radius was 11/16 in.

The behavior of the cable system as a function of the independent cable and fish pa-
rameters is best discussed and illustrated with reference to some of the pictures which

12
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were obtained. Figs. 3, 4, and 5 show photographs of the cable projection on the&,,jj;; . ... 

plane together with the values of the parameters y, A, C, and Wf correspondingto the
particular figure.

The most important and unusual conclusions to be reached from this experliernt.
concern the nodal point pattern of the cable-fish system. Note that in Fig. 3, tiAiitr
of nodal points (points where x = 0) increases from one to two as y increases from 1.64
to 5.94. Similarly, in Figs. 4 and 5, the number of nodal points increases from two to
three as y increases from 2.46 to 4.77 and 2.60 to 7.23, respectively. However, this
shift in nodal numbers is not marked by a continuous transition with increasing.: That
is, there are critical values of the rotational frequency Y at which the cable attempts to
"'jump"from one nodal configuration to the next. This violent transitional behavior is
vividly demonstrated in Fig. 6 where the system corresponding to Fig. 3 (A = 37. 8:,.
C =0.018, w - 1352) is attempting to jump from its one-node to its two-node confi iration
at y - 3.9.

Several other physical phenomena which must be predicted by the equilibrium equa-
tions are readily discernible from Figs. 3 to 5. To place these in an appropriate mathe-
matical form, let yc, (A, C, wF) represent that value of Y for which a fixed system (A, C,
and Wf constant) jumps from its (n - i)st to its nth nodal configuration. Also, let. R:'
be the value of the x component of the resultant force at s = 0 (the attachment point of.
the ship and the cable), and let R"(A, C, wf) be the value of R,0 immediately following
transition to the nth nodal shape. Then, with reference to Figs. 3, 4, and 5, the follow-
ing conclusions can be drawn from the present experiment:

1. For fixed C and wf, the critical values of y decrease as x increases. (Fig. 3b,
one node at y = 2.97 vs Fig. 4a, two nodes at y = 2.46; and Fig. 3c, two nodes at y = 5.94

vs Fig. 4c, three nodes at y = 4.77.) This result can be expressed mathematically as

Ycn (AlC, wf) < y,2n (Ak2 ,C, Wf), (24a)

if

A1 > \2 (24b)

2. For fixed C and A, the critical values of y decrease as wf decreases. (Fig. 4c,
three nodes at y = 4.77 vs Fig. 5b, two nodes at Y = 4.77.) Mathematically, this result
can be summarized as

ifYn(AC-fl) < YQ,(A.C'wf 2 ) , (25a)

if

3. Immediately following transition dx/ds is negative at s = 0 (Figs. 3a, 4a, 4c, and
5a). Since, from Eq. (20a), the sign of dx/ds is the same as the sign of R_, this result
gives

RX(ACw,) C 0 . (26a)

As Y increases, dx/ds at s = 0 becomes continuously more positive until the next transi-
tion point is reached. (Compare Figs. 3a and 3b, Figs. 4a and 4b, and Figs. 5a iaM§b.)
Again using Eq. (20a), this means that

dRy (26b)
dy
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(a) Y = 1.64 (b) y = 2.97

Fig. 3 - Experimental x- z projections for the circularly towed cable system
A = 37.8. C 0.018, Wf = 1352

(a) y = 2.46 (b) = 4.24 (c) y = 4.

Fig. 4 - Experimental x -z projections for the circularly towed cable system
= 52.4, C = 0.018, Wf 1352

(a) r 2.60 (b)r = 4. 7 (7

Fig. S - Experimental x- z projections for the circularly towed cable system
A 5 52.4, C = 0.018, Wf = 1571

I

C,) Y = 5.94

, 77

.23

14
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Fig. 6 - One- to two-node transitional
behavior at v - 3. 9 for the circularly
towedcable system h, - 37.8, C = 0. 018,
Wf = 1352

for
Y'~n-1)(L'C'Wf) < Y < y,,(AXsCswf) 6

No conclusions can be drawn from this experiment concerning the effects of the drag
constant C on the critical values of y. In fact, for most of the cases discussed in this
section, the effect of drag on the equilibrium cable shape is negligible as shown in the
y - z planar projections of Figs. 7 and 8. (As will be shown later, the influence of drag
can be surmised by the amount of deflection of the cable away from y = 0.) The y- z
projection of Fig. 7a corresponds to the x- z projection of Fig. 3a, and similarly for
Figs. 7b and 3b, 7c and 3c, 8a and 4a, and 8b and 4c. It is seen that only in the latter
case has the influence of drag become significant in determining the equilibrium shape.

ON THE SHAPE IN A VACUUM

The equations of static equilibrium cannot, of course, be used to study the complex
dynamic transitional behavior of the cable. This does not, however, negate their validity
for predicting the onset of unstable behavior and for determining the cable shape when
static solutions are possible. To ascertain whether the theoretical equations do indeed
possess these properties and the additional properties described by Eqs. (24) to (26), it
is useful to make all of the rational simplifications which are possible.

Since the experimental results detailed in the last section indicated small deflections
of the cable away from y = 0 (Figs. 7 and 8), the most natural theoretical simplification 
is to assume that

y0 . (27a):;
Substituting Eq. (27a) into Eq. (20b), then, gives

=0. (2= )

The null results given by Eqs. (27a and b) identically satisfy the y-directional boundary
conditions at the ship and fish, Eqs. (22b) and (23b), respectively. However, these re-
sults do not satisfy the equation of equilibrium in the y direction, Eq. (21b), unless the
drag constant C = o. This means, of course, that the assumption y = o is equivalent to
assuming a vacuous towing medium (see Table 1). Since the experimental value of C was
0.018, the assumption of a vacuous medium for a preliminary study of the equations of
equilibrium seems justified. Note that this assumption, while greatly simplifying the

15
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(a) r = 1;64 (b) y = 2.97 42)r = S.94

Fig. 7 - Experimental y- z projections for the circularly towed cable system
? = 37J8,C = 0.018, Wf = 1352

(a)y 2.46 (b)y 4.77

Fig. 8 - Experimental y-z projections for the circularly
towed cable system s - S2.4, C = 0. 18 w - 135 2

equilibrium equations, retains the basic characteristic which distinguishes towing in a
circle from towing in a straight line. This is the presence of a centrifugal force acting
on the cable.

The equilibrium equation in the z direction (,Eq. (21c)), when specifled to a vacuum
(C = o, w = i), becomes

dR 7
-+ 1 o.
ds

The integral of this equation which satisfies the z-directional boundary condition at the
fish, Eq. (23c), is given by

(28)R. = wf + (A - s) .

16
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By substituting the values of R, (Eq. (2Tb)) and R. (Eq. (28)) into Eq. (20d) for the
tension T, the solution for the shape of a cable towed in a circular path throughia vacuum
can be reduced to integrating two first-order differential equations for x and Rx obtained
from Eqs. (20a) and (21a), as

dx _ x (29a)
ds [w ++

and

X = _Y 2 X.(29b)

ds

At s = 0, the solution of these equations must satisfy the boundary condition given by
Eq. (22a); and since in a vacuum mf = Wf, the boundary condition at s = A is derived
from Eq. (23a) as

R,(A) - Wfy
2 x(X) = 0 (30

Once the solution for R,, has been obtained, the solution for z which satisfies the
boundary condition Eq. (22c) can be found from the integral of Eq. (20c) as

z f W~r +(X4)0 d (1

J l[wf + (A-_)] 32 + R2(31)

METHOD OF SOLUTION

The formal integral of Eq. (29a) which satisfies the boundary condition x (0) = 1 (Eq.
(22a)) is given by

rJSRX do . 0 (32a)

0 EUf + (A-) +Rx.

Similarly, the formal integral of Eq. (29b) can be written as

RX - Rx0 y 2f x d, (32b)

where now, however, RxQ is a constant of integration which must be chosen so that the
boundary condition at s -A, Eq. (30), is satisfied.

(Note that once some value of R,, has been assumed, the values of x (A) and RX(A)
can be obtained by a numerical integration of Eqs. (32a) and (32b). In this report, the
fourth-order Runge-Kutta method (see Ref. 10) has been used to perform the integrations,
and all calculations have been done with the cable length divided into 100 segments.)

In general, for an arbitrary guess at RTx, the boundary condition at. = A is not
satisfied. If the error at A, E(X), due to this guess is defined by

E(A) = RX(A) - Wfy2X(h), (33)
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the method of solution then consists of making repeated guesses at Rat until a value (or
values) is found for which E (A) 0 . Since this is a hit-or-miss method, it is desirable,
if possible, to bound the values which R., may take so that the search can be localized.
This is easily accomplished.

Consider first x. Since the integrand in Eq. (32a) is bounded between ±1, the value
of x(s) can be bounded as

1 - s < V(s) c I + s

Now consider the boundary condition Eq. (30). Using Eqs. (32b) and (33), this condition
can be rewritten as

A

E(A) - Rzo - Wfy2X(A) - y2 f x ds =0 ( (34)

Using the lower and upper bounds of x (s), the term

Wfy2 x () + y2 f x ds

can be limited to the range

A A A

wfy2 (i- A) + y2f (I- s) US < way2 x(A) + y2 X ds < wfy2(i + A) +y2f (l+ s) ds .

In this inequality, the left-hand side (l.h.s.) gives the minimum value which must be sub-
tracted from Rx) and the right-hand side (r.h.s.) gives the maximum value which can be
subtracted from R,.. Consequently, from Eq. (34), E(A) must be negative if RO is less
than the left-hand side of the inequality. Similarly, E (A) must be positive if Ro is
greater than the right-hand side of the inequality. Thus, the range of values of RO for
which B (A) can possibly equal zero is bounded to

l.h s. c RX0 < r.h.s.

Evaluating the integrals which appear in the inequality, this condition can be expressed
analytically as

[y2 (w1 -l) A <2 2[2 + A\ (w + 1) + Wfj(35)

All possiblb solutions of Eqs. (32a and b), subject to the boundary condition Eq. (34),
can now be found by obtaining a plot of E (A) vs RxO over the range of values of RO given
by Eq. (35). Such a curve is called a "solution curve"; and, as stated previously, those
values of R,, for which E (A) - o are consistent solutions of the boundary value problem.
Note that, within this range for R,,, there exists at least one consistent solution. This
follows from the fact that E(A) changes from negative to positive as t proceeds from
the left-hand to the right-hand side of the range.

18
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THE CHARACTER OF THE SOLUTIONS FOR A < •c

(ZERO-NODE SOLUTIONS)

It is geometrically obvious that no equilibrium cable shape containing a nodal point
can exist if A < 1. However, it does not necessarily follow that a nodal equilibrium so-
lution can be obtained if A > l. Thus, the condition that A > l is a necessary, but not
sufficient, condition for the existence of nodal solutions. In this section, a best value of
x, Ac, is determined such that for X c A, no nodal solutions are possible. Conversely,
since this is a best value, it must follow that nodal solutions can exist if x > xc. That
this is true will be shown in the next section of the report.

Recall the experimental result that Rxo is negative immediately followingtransition
to a higher order nodal solution, Eq. (26a), and let it be postulated that the best condition
for the nonexistence of nodal solutions can be obtained by limiting the possible equilib-
rium values of Rx, to a positive range. According to Eq. (35), this situation can occur
only if the left-hand side of the inequality bounding Rx0 is positive. The postulate then
assumes the form that nodal solutions cannot exist if A < Ae, where A0 is the solution of

XC2
-+ C(wf- 1) - Wf= 0 

The physically acceptable solution of this equation (positive Xc) is

AC = 1 - Wf +VTT . (36)

The curve of A, vs Wf is plotted in Fig. 9. Note that A, is always greater than unity.

2.0

1.8' 

1.2-

RANGE of ZERO-NODE SOLUTIONS

1.0 I ' '

0 2 4 6 a 10

Fig. 9 - The critical value of A, A, , vs wf

The proof of this postulate is, unfortunately, numerical rather than analytical and
consists of obtaining solution curves for the triplet (W

1
, A S A,,, y) over a wide range of

values. In particular, solution curves have been obtained for all possible combinations of
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wf = 0, 10. 20 . , 100,

A = A, A,, - 03)1, AC - 0.02, .- 1 ,

and

y = 1, 19, 29, 39, .. a 99.

By using these solution curves, the equilibrium values of RX0 have been found and the
corresponding equilibrium cable shapes determined.

The general shape of the solution curves obtained in these calculations is shown in
Fig. 10. In particular, curve (a) corresponds to wf =. 0, = A,, = 2, and y = 39; and
curve (b) to wf = 10, X = X, = 1.05, and y = 19. The curves for all other values of wI,
A = A,,, and y are similar, as are the solution curves for A < A,. For the latter curves,
of course, the left-hand side of the possible range for R,0 is greater than zero. A typi-
cal example is shown in curve (c) for wf = 0? A = 1.8 , and Y = 39.

x) X10-5

RoXx 10-3

Fig. 10 - Typical solution curves for A < xS

The most important thing to notice about these solution curves is that for each curve
there exists only one value of R, 0 for which E (A) = o . That is, for A < AC,, there is
only one possible equilibrium cable shape. In Fig. 11, a typical equilibrium configuration
generated by this solution is shown. For this particular example, wf = 0, A = AC = 2,
and Y = 1. The equilibrium value of R., is given by 3.79886. Note that in this configu-
ration the x coordinate of the cable is monotonically increasing from x = 1. Obviously,
such a shape corresponds to a non-nodal solution, thereby verifying the postulate that
nodal equilibrium configurations cannot exist if A C A,,.

-2-

- 2

-3.

-4

-6

-7.

20

W, - to, X- X, - 1.05, Y, . 49
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0 1.0 2.0 3.0

Fig. ii - Typical zero-node cable
shape for A < A ; in particular,\
W =, 'A z - 2, y = 1

THE CHARACTER OF THE SOLUTIONS FOR X > A,
(NODAL SOLUTIONS)

To examine the behavior of the solutions for A > A,, a series of solution curves
have been determined for the triplet (wf, A = A, + 0. 1, y). The values of wf again range
from 0 to 100 in steps of 10, and the curves have been calculated at various values of y.
The character of these solution curves is drastically different from the curves obtained
for A < XA_ A typical series of curves is shown in Fig. 12 for wr = 0, A = 2.1, and
y = 3.8, 5.0, and 6.2.

Note that for y a 3.8 and 5.0, only one value of RX,, denoted by RI,, exists for
which the boundary condition E (A) = o is satisfied. The cable shape corresponding to
this solution is similar to the shape depicted in Fig. 11; that is, the cable swings outward
from x = 1. However, as y increases to 6.2, three solutions which satisfy the boundary
condition becomes possible. These are denoted by Roo , Rbl, and Rl. The cable shape
corresponding to the solution R% is again similar to Fig. 11. The shapes corresponding
to RbZ and Rb' are shown in Fig. 13. Note that the latter equilibrium configurations each
contain one nodal point.

For all of the cases studied with A = A, + 0. 1, this three-solution behavior (with the
corresponding zero- and one-node cable shapes) initiates at y < 20 and persists to
y = 100, which is the largest value of y used for calculating the solution curves. Thus,
these results indicate that for A = A, + 0. 1 no solutions exist which can generate cable
shapes having more than one nodal point.

As A becomes increasingly greater than A,, the nature of the solution curves be-
comes increasingly more complex and interesting. Fig. 14 details a series of these
curves for wr = 0 and A = 10 at values of Y equal to 0. 5, 1. 0, and 1. 5. Note that for
Y = 0. 5, there are three possible solutions of the equilibrium problem. As before, these
are denoted by Ra0 , sbg, and R1 d, and generate, respectively, zero-node, one-node, ant
one-node cable shapes. As y increases to 1. 0, the number of solutions (and corre- 
sponding shapes) remains the same. However, the solution RbI has become more nega-
tive while the solution R44 has become more positive. Finally, as Y increases to 1.5,
five solutions become possible. These two additional solutions are denoted by Rdo and
4X and generate the two-node equilibrium shapes shown in Fig. 15.

Note that these two additional solutions fall between R6' and Rb. . As has been
demonstrated by other calculations not reproduced in this report, this is a typical and
consistent behavior of the solutions curves. In other words, additional possible equilib-
rium solutions always arise in pairs, and these two additional solutions are always the
first two solutions directly to the left of the previous median solution. Thus, in Fig. 14,
when y = 1. 5, Rd- and RX0 are the first two solutions to the left of Rto which is the me-
dian solution when y = 1.0. Similarly, in Fig. 12, when y = 6.2, Rb' and RbI are the
first two solutions to the left of R%, which is the median (and only) solution when y = 5.0
This behavior, coupled with the fact that E (A) changes from negative to positive as R,0
proceeds from the left-hand to the right-hand side of its possible range of values (Eq.
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Fig. 12 - A series of solution curves for.A z 2.1, w f - o

z

Fig. 13 - One-node cable shapes generated by the equilibrium
values RhD and Rblfor x -- 2. i, Wf = 0, -r = 6.2xO MO
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E()

20

0

-20

-40

Fig. 14 - A series of solution curves for A = 10, wf = 0

Fig. 15 - Two-node cable shapes generated
by the equilibrium values Rdr and R'o for
A - 10, Wjr 0, Y = 1. 5

8
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(35)), is sufficient to guarantee that each solution curve can have only an odd number of
roots, one of which may be a double (tangent) root. Note, for example, that in Fig. 14 the
solution curve for y = 0. 5 has just passed the condition of tangency.

Since for A > Ax, it is possible to generate more than one equilibrium solution, a
small perturbation dynamic analysis about each solution would be necessary to analyti-
cally determine which of the cable shapes are stable and which are unstable. This treat-
ment is quite complex, especially since the equilibrium configurations are known only
numerically. Fortunately, in lieu of a small perturbation analysis, the experimental re-
sults can be used to develop an interpretation of the solution curves.

In the experimental results for fixed A and wf, recall that the number of nodes in-
creases as Y increases, that immediately following transition the value of Rxo is nega-
tive (Eq. (26a)), and that between transitions the equilibrium value of RX becomes con-
tinuously more positive with increasing y (Eqs. (26b and c)). The following interpretation
of the solution curves is then logical and consistent. For fixed A and wf, then,

1. For small y, only one solution, the zero-node solution, is possible.

2. As y increases, and for A > A,,, a double root is approached. This root is always
to the left of the previous median (and only) solution. The value of y for which the double
root occurs represents a transitional instability. In fact, this value of y is Yx I (A We)
since the double root generates a one-node equilibrium configuration.

3. As y increases further, the median root (Rbo in Figs. 12 and 14) determines the
stable configuration.

4. As y increases still further, the solution curve again approaches a tangency con-
dition if A is sufficiently large. (Recall that for X = A , + o. 1 this second tangency con-
dition does not appear.) This double root always occurs between the previous median
solution and the solution directly to the left of the previous median solution. The value
of y for which this double root occurs is Y 2(A, W1) 1 since this root marks the transition
from a one-node to a two-node solution.

5. As y increases from y,,2 (A, wf), the new median solution (RZe in Fig. 14) deter-
mines the stable configuration.

6. For sufficiently large A, steps 4 and 5 are a continually repeating process.

To demonstrate the validity of this interpretation, the problem of predicting the
cable shapes shown in Fig. 3 is considered. The calculations are, of course, idealized
to a vacuous medium. For the set of photographs in Fig. 3, the dimensionless cable
length A is equal to 37.8 and the dimensionless fish weight WI is given by 1352. Figs.
3a, b, and c correspond, respectively, to rotational frequencies Y of 1.64, 2.97, and 5.94.

The solution curves for this problem are plotted in Fig. 16, and the value of the me-
dian root obtained for each y is

for y = 164, Rko = 5.543629;

for y = 2.97. R 52o = S52,265381

and

for y = 5.94, R. O = 534-242818

24
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-20 I 1 l I I I I I I I I 1 -TO RxoXIQ
5

-20 -10 -5 -3 -I 1 3 5 10 20

Fig. 16 - Solution curves for = 37. 8, w =1352

These roots have been calculated to an accuracy of I E(A ) 10-< 5 . The cable shapes
generated by the median solutions are shown in Fig. 17. The marked similarity between
the theoretical shapes in Fig. 17 and the experimental photographs of Fig. 3 is obvious
and verifies the above interpretation of the solution curves.

SOME QUALITATIVE CONSIDERATIONS

In order to construct a table showing perhaps x(X) and z(A) vs y, A, and Wf, it
would first be necessary to construct an auxiliary table which would give the critical
values of Y, yn(Awfl, and the corresponding critical values of R,, Rcg(A. wf), since
these values mark transitional points of the stable solution. This represents a massive
computational problem and will not be pursued here. However, certain qualitative re-
marks concerning the auxiliary table can be made.

First, to be in accord with the experimental results, the table should show that for
fixed wf the critical values of y decrease as A increases (Eqs. (24a and b)). That the
theoretical calculations do predict this behavior may be seen by referring to Figs. 12
and, 14. From Fig. 12, it is seen that yc1 (2. 1, 0) - 6. 2, whereas from Fig.. 14,
YrI.(10 ., 0) - 0.5. Also, from previous discussions, YCv2 (2. 1, 0), if it exists, is greater
than 100; while, again from Fig. 14, Y,2(10., o) - 1. 5.

The second experimental conclusion (Eqs. (25a and b)) that

Y-,(A"wfl) c Y,,(AXwf 2 ) if Wfl < Wf2
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is not always true. That this is so can be readily shown. Suppose A = 2 and wf1 = 0
while wf2 = 100. Then for wf A = A0 and no critical rotational speed exists; whereas
for Wf21 A > A, and thus a critical finite rotational speed does exist. On the other hand,
as A increases, this character may change. Thus, from Fig. 14, Y&,2(io.I 0) 1. S. Con-
sequently, from Eqs. (24a and b), Y, 2(37.8, 0) < 1.5. Meanwhile, from Fig. 16, it is
seen that y,2 (37.8. 1352) > 2.97, Thus

2 0 2 4 Y, 2 (37.8. 0) < Yc2(37.8, 1352)

in accordance with the experimental observations.

CONCLUSIONS

This report has considered, both by experimental and
theoretical means, the quasi-static problem of determining
the shape of a cable towed in a circular path. For the
present, these studies have been restricted to cases where

as \ the effect of hydrodynamic drag is negligible.

The results of the experimental approach show many
surprising phenomena, of which the most important is that
for certain combinations of the governing parameters no
stable equilibrium solution for the cable shape exists.
Rather, at these combinations of parameters, the system
is marked by a violent dynamic motion between two adjoin-
ing nodal configurations.

To study this phenomenum theoretically, the static
Y, 5.94 / =Y64 Y"2.97 equilibrium equations have been idealized to a vacuous

medium. It has been shown that the solution to these equa-
tions is not unique. That is, for a given set of parameters,
several equilibrium configurations are possible. The
questions of stability of equilibrium and onset of transition
have been resolved from these solutions by reference to
the experimental observations.

50 / Unfortunately, the results in this report have been ob-

tained by necessity from extensive numerical calculations.
This leaves as rather undefined the essential physical and
analytical reasons for the behavior of the cable-fish sys-
tem. Noteworthy as missing is a theoretical stability
analysis of the possible equilibrium shapes. However,
since no drag forces are present in a vacuum, it can be
concluded that the centrifugal force on the cable is the
principal agent responsible for producing the unsteady

40- transitional behavior.
Z

The extension of the methods and arguments in this
Fig. 17 - Theoretical x-z report to the more realistic problem with drag included is
projections based on the by no means trivial. When drag is introduced into the
median root interpreta- equilibrium equations (Eqs. (2ia, b, and c)), there are
tion for the cable system three, rather than one, unknown reaction components at the
A = 37.8. X,f = 1352 towpoint. Consequently, the calculation and interpretation

26
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of a solution surface in a three-dimensional reaction space present obvious diffi-
culties.

The results of this report should also serve as a considerable warning to those in-
terested in studying the behavior of a cable towed in an arbitrary path. The fact that the
dynamic boundary value problem can be non-unique poses several questions of. both nu-:
merical and mathematical stability which should be closely examined.
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